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Sampling Problems

What is the probability of
finding a protein in a given

conformation?

Bayesian inference for ODE
model of circadian rhythms.

Compute sample from
posterior distribution.

Compute sample from
Boltzmann distribution.

Figure from Phong, et al, PNAS, 2012Figure from Folding@home



Markov Chain Monte Carlo (MCMC)

Goal: Compute π(g) :=
∫
g(x)π(dx).

MCMC Method: Choose Markov chain Xn so that

lim
N→∞

1

N

N−1∑
n=0

g(Xn) = π(g).︸ ︷︷ ︸
“Xn samples π.”
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Difficulties with MCMC
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Multimodality: Multimodality =⇒ slow convergence

Tails: Need large sample to compute small probabilities, e.g. π ([M,∞)).



Sketch of Stratified MCMC

1. Choose family of strata, i.e. distributions
πi whose supports cover support of target
π.

2. Sample strata by MCMC.

3. Estimate π(g) from samples of strata.
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Why Stratify?

• Strata may be unimodal, even if π is
multimodal

• Can concentrate sampling in tail

Typical Strata: πi(dx) ∝ ψi(x)π(dx)
for “localized” ψi .



History of Stratification

Surveys: [Russian census, late 1800s], [Neyman, 1937]

Bayes factors: [Geyer, 1994]

Selection bias models: [Vardi, 1985]

Free energy: [Umbrella Sampling, 1977], [WHAM, 1992], [MBAR, 2008]

Ion channels: [Berneche, et al, 2001]

Protein folding: [Boczko, et al, 1995]

Problems:

1. WHAM/MBAR are complicated iterative methods . . .

2. No clear story explaining benefits of stratification.

3. Stratification underappreciated as a general strategy.

4. Need good error bars for adaptivity.

BvK, et al: Propose Eigenvector Method for Umbrella Sampling,
develop story, error bars, stratification for dynamical quantities . . .
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Eigenvector Method for Umbrella Sampling (EMUS)
[BvK, et al]
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Bias Functions: {ψi}Li=1 with

L∑
i=1

ψi (x) = 1 and ψi (x) ≥ 0.

Note: User chooses bias functions.

Weights: zi = π(ψi )

Strata: πi (dx) = z−1
i ψi (x)π(dx)



Eigenvector Method for Umbrella Sampling (EMUS)
[BvK, et al]

Goal: Write π(g) in terms of averages over strata πi (dx) = ψi (x)π(dx)
zi

.

First, decompose π(g) as weighted sum:

π(g) =

∫
g(x)

L∑
i=1

ψi (x)︸ ︷︷ ︸
ψi ’s sum to one

π(dx)

=
L∑

i=1

zi

∫
g(x)

ψi (x)π(dx)

zi︸ ︷︷ ︸
πi (dx)

=
L∑

i=1

ziπi (g).

How to express weights zi = π(ψi ) as averages over strata?
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overlap matrix

.



Eigenvector Method for Umbrella Sampling (EMUS)
[BvK, et al]

Goal: Write π(g) in terms of averages over strata πi (dx) = ψi (x)π(dx)
zi

.

First, decompose π(g) as weighted sum: π(g) =
∑L

i=1 ziπi (g).

To express weights zi = π(ψi ) as averages over strata,

zT = zTF︸ ︷︷ ︸
eigenproblem

, where Fij = πi (ψj)︸ ︷︷ ︸
overlap matrix

.
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Goal: Write π(g) in terms of averages over strata πi (dx) = ψi (x)π(dx)
zi

.

First, decompose π(g) as weighted sum: π(g) =
∑L

i=1 ziπi (g).

To express weights zi = π(ψi ) as averages over strata,

zT = zTF︸ ︷︷ ︸
eigenproblem

, where Fij = πi (ψj)︸ ︷︷ ︸
overlap matrix

.

Why does eigenproblem determine z?

1. F is stochastic; z is a probability vector.

2. If F irreducible, z is unique solution of eigenproblem.



Eigenvector Method for Umbrella Sampling (EMUS)
[BvK, et al]

Recall: π(g) =
∑L

i=1 ziπi (g), and zT = zTF for Fij = πi (ψj).

EMUS Algorithm:

1. Choose bias functions ψi and processes X i
n sampling the strata.

2. Compute ḡi := 1
Ni

∑Ni
n=1 g(X i

n) to estimate πi (g).

3. Compute F̄ij := 1
Ni

∑Ni
n=1 ψj(X

i
n) to estimate F .

4. Solve eigenproblem z̄T = z̄T F̄ to estimate weights z .

5. Output gEM =
∑L

i=1 z̄i ḡi .

Key Point: Simplicity of EMUS enables analysis of stratification.
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EMUS Analysis: Outline

1. Sensitivity of gEM to sampling error.

2. Dependence of sampling error on choice of strata.

3. Stories involving multimodality and tails.



Quantifying Sensitivity to Sampling Error I

For F irreducible and stochastic, let z(F ) be the unique solution of

z(F )T = z(F )TF .

PF
i [τj < τi ]: probability of hitting j before i , conditioned on starting

from i , for a Markov chain on 1, . . . , L with transition matrix F .

Theorem [BvK, et al]:

1

2

1

PF
i [τj < τi ]

≤ max
m=1,...L

∣∣∣∣∂ log zm
∂Fij

(F )

∣∣∣∣ ≤ 1

PF
i [τj < τi ]

≤ 1

Fij
.

Led to new perturbation bounds for Markov chains [BvK, et al].



Quantifying Sensitivity to Sampling Error II

Assumption: CLT holds for MCMC averages:√
Ni (ḡi − πi (g))

d−→ N(0, C (ḡi )︸ ︷︷ ︸
asymptotic variance

).

Theorem [BvK, et al]:
√
N
(
gEM − π(g)

) d−→ N
(
0,C

(
gEM

))
, where

C
(
gEM

)
varπ(g)

.
L∑

i=1

∑
j 6=i
Fij>0

1

PF
i [τj < τi ]2


︸ ︷︷ ︸

sensitivity to error in F̄

×
∑L

j=1 C
(
F̄ij
)

κi︸ ︷︷ ︸
error in F̄

+ z2
i

C (ḡi )

κi
.

Notation: N is total sample size, with Ni = κiN from πi .
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Dependence of Sampling Error on Strata I

Write π(dx) = Z−1 exp(−V (x)/ε) for some potential V :
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Assume bias functions ψi piecewise constant:

D

Assume X i
t is overdamped Langevin with reflecting boundaries:

dX i
t = − ∇V (X i

t )dt︸ ︷︷ ︸
gradient descent

+
√

2εdB i
t︸ ︷︷ ︸

noise

+ reflecting BCs



Dependence of Sampling Error on Strata II

Let π(dx) = Z−1 exp(−V (x)/ε) for some potential V :
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Theorem [BvK, et al]: For overdamped Langevin with reflecting BCs,

C(ḡi )

varπi (g)
.

D2

ε︸︷︷︸
diffusion scaling

× exp

(
maxsuppπi V −minsuppπi V

ε

)
︸ ︷︷ ︸

Arrhenius

.

Notation: D is diameter of support of πi .



EMUS Analysis: Outline

1. Dependence of sampling error on choice of strata.

2. Sensitivity of gEM to sampling error.

3. Stories involving multimodality and tails.



EMUS and Multimodality

Let π(dx) = Z−1 exp(−V (x)/ε) for double well V :
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Asymptotic variance of näıve MCMC grows exponentially as ε ↓ 0.

Theorem [BvK, et al]:
For right choice of strata (L ∝ ε−1),
asymptotic variance of EMUS estimate gEM grows polynomially as ε ↓ 0.



EMUS and Tails

Goal: Compute π([M,∞)) =
∫∞
M π(dx).
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For a broad class of distributions π,
relative asymptotic variance of MCMC grows exponentially as M ↑ ∞.

Theorem [BvK, et al]:
For right choice of strata,
relative asymptotic variance of EMUS grows polynomially as M ↑ ∞.



Example: EMUS for Bayesian Inference

Goal: Fit set of thicknesses of 485 stamps by mix of 3 Gaussians:
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Parameters: means µ1 ≤ µ2 ≤ µ3, precisions λ1, λ2, λ3, weights, etc

Bayesian method: Define posterior distribution on parameter space.



Example: EMUS for Bayesian Inference

Parameters: means µ1 ≤ µ2 ≤ µ3, precisions λ1, λ2, λ3, weights, etc

Objective: Compute marginal in log10 λ1 and log10 λ2.

Strata: Cylinders over grid of regions in log10 λ1, log10 λ2 plane:

Scanned by CamScanner



Example: EMUS for Bayesian Inference

Parameters: means µ1 ≤ µ2 ≤ µ3, precisions λ1, λ2, λ3, weights, etc
Objective: Compute marginal in log10 λ1 and log10 λ2.



Example: EMUS for Bayesian Inference

Asymptotic variances of EMUS vs. unbiased MCMC for marginal in log λ1:
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Conclusions

We present and analyze EMUS, a stratified MCMC method, and we
derive practical error bars for EMUS estimator [BvK et al, JCP, 2016].

Our analysis required development of new perturbation estimates for
stochastic matrices [BvK et al, SIMAX, 2015].

We clearly identify classes of problems for which stratification is
beneficial, and we propose novel applications in statistics
[BvK et al, 2019+].

We analyze and improve a stratification method for computing
dynamical quantities [BvK et al, SIREV, 2017].

Ongoing Work: Convergence of NEUS, automatic methods for
determining strata, comparison with other rare event sampling
methods, . . .


